Fungus Species

- More than 50 species of Fungus produce more than 400 types of Mycotoxins:
- Fusarium sp
- Aspergillus sp
- Penicilium sp
- Claviceps sp

Important Points

- Generally, Mycotoxins in feed are mixed and rarely occurs singular (Solution should take care of Mixed toxins)
- Mycotoxins are synergistic in action- Mixed mycotoxins are more Dangerous
- Aflatoxins entry from feed to milk average 6%
- Mycotoxins can enter Milk within 6 hours after animal has taken feed
- As Calves have Rumen at developing stage, mycotoxins are more toxic for Calves.
- Toxins also interact with Amino acids and Minerals absorption present in the feed.

Source of mycotoxins in ruminant feed

Ingredient	Mycotoxin occurrence	Inclusion rate in diet	Contribution in total mycotoxin risk
Maize silage	All mycotoxins, high occurrence	High	High
DDGS	All mycotoxins, very high occurrence	Medium	High
Maize	All mycotoxins, high occurrence	High	High
Grass (pasture)	Ergot alkaloids, occurrence depends on year	High	Medium
Wheat bran	Trichotecenes, ZEA, ergot alkaloids, occurrence depends on year	High	Medium
Grass silage	Low occurrence	High	Low
Oilseeds	OTA, ZEA	High	Low
Wheat	Trichotecenes, ZEA, ergot alkaloids, occurrence depends on year	Medium	Low

8000000000

Mycotoxins in ruminants

Reproductive system

ZEA

- Irregular heats
- Low conception rates
- Ovarian cysts
- Embryonic toss

Central nervous system

ERG

Neck paralisis

Gastro-intestinal tract

FUM, T2, DON

- Gastroenteritis
- · Intestinal hemorrhages
- Impaired rumen function.
- Diamea
- Ketosis

Udder

AFL T2, DON.

- · Milk contamination
- · Decreased milk production
- Mastriis

Hoofs

FUM, DON, ERG

Laminitis

Performance

T2, DON

- · Decreased feed intake
- · Lower milk production
- · Decreased feed efficiency

Negative effects of mycotoxins in ruminants

- Calves
- · Heifers

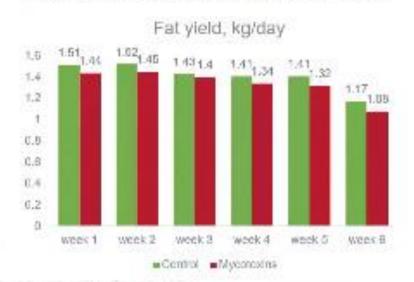
- · Dairy cattle
- · Beef cattle

Common symptoms:

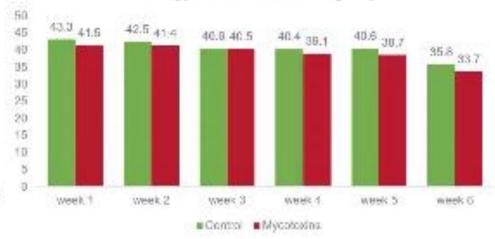
- Decreased feed intake
- · Reduced weight gain
- · Inhomogenous growth
- Higher mortality
- Diarrhoea
- Gastroenteritis
- Enlarged and reddened teats in helters
- Poor response to vaccination.
- Lesions on the muzzle, lips, tongue, and pharynx

Common symptoms:

- · Decreased feed intake, increased feed refusal, anorexia
- · Reduced weight gain, weight loss
- Decreased milk production, agalactia
- · Depressed butterfat in milk
- · Elevated somatic cell count, mastitis
- Diarrhoea
- Gastroenteritis
- Higher incidence of ketosis (fatty liver), retained placenta, metritis, fertility disorders, displaced abornasum
- Lameness, hoof necrosis
- Ovarrian cysts
- · Vaginitis, vaginal secretions
- Increased body temperature/heat stress
- · Staggering gait
- · Poor response to vaccination
- · Aflastoxin #11 in milk


Effect of mycotoxins on milk production and quality

milk production milk fat


SCC

Milk contamination by Aflatoxin M1

FUM 1054 ppb, ZEA 628 ppb, DON 4771ppb

#SCC

Mycoloxins

Control

netural contamination fusarium mycotoxins DON, 15-acetyl DON and ZEA (Korosteleva et al. 2009)

Typical symptoms of mycotoxicosis

- Aflatoxin B1 hepatotoxic
 - 0.05 ppb

- Aflatoxin B1 food quality concern
 - 0.002 ppb (0.02 ppb):

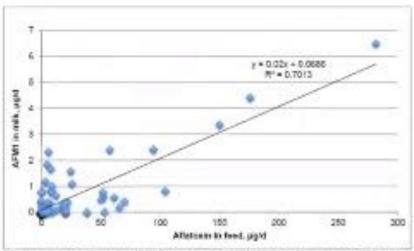


Figure 1. Local field survey data for mass of affatoxin M1 in milk vs mass of affatoxin in feed.

Life phase - different metabolism

medium

heifer

Lower feed/mycoloxins furnover in rumen – belter ruminal deact valion (e.g. DON)

Consider health of cow-fatus due to stable mycotoxins (e.g. ZEA, ERG, AEL)

Mynotoxino stable in rumen can cause abortion (e.g. ZEA, ERG)

high

dry cow

Lower feed/mypoloxine furnover in rumen – better ruminal descrivation (e.g. DON)

Consider health of cow+fetus due to stable mycotoxins (e.g. ZEA, ERG, AFL)

Mynatoxins stable in rumen can cause abortion (e.g. ZEA, ERG)

Mycoloxins can cause oxidative stress (AFL)

high

1/3 lactation

Higher feed/mycotizons tumover in rumen – worse ruminal descrivation (e.g. DON)

Mycotorina will affact performance (DON – yield and fat) and milk quality (AFL)

ZEA can cause false cestrus and ineffective insemination

medium

2-3/3 lactation

High feed/mycotoxins turnover in rumen – worse numinal deactivation (e.g. DON)

Mycotoxins will affect performance (DON – yield and fat) and milk quality (AFL)

Mycotoxins stable in rumen can cause abortion (e.g. ZEA, ERG)

Maximum legal limits in complete feed, ppb

Mycotoxin	Dairy cows	Calves, lambs	Others
Aflatoxin*	5	10	50
DON**	5.000	2.000	5.000
Ochratoxin	200	100	200
Zearalenone**	500	500	500
T+HT-2 toxins	100	100	100
Fumonisin B1+B2**	50.000	20.000	50.000

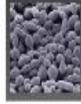
^{*}DIRECTIVE 2002/32/EC

^{**}COMMISSION RECOMMENDATION 2006/576/EC

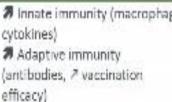
Multiple Toxin Binder- Toxyni

Adsorption

High adsorbent modified clay minerals


Sepiolite → ZEA, OTA, FUM, ER Yeast wall → ZEA (in vitro evaluation)

Bentonite → AFB1


Bio-inactivation Yeast and fermentation extracts inactivation of mycotoxins by the intestinal microflora or by host cells, stimulated by the veast

Immune system revival

Fermentation extracts

Repair

Oxidative stress inhibition Antioxidant and preservative mixture

Moderate oxidant: Fum, AFB1, Low oxidant: DON, OTA → ROS production and then, o damage

Strong oxidant: ZEA

Aid to affected organs Botanicals

R&D results to support the mode of action of TOXY-NIL®

Protocol

University of Missouri

 24 mid-lactation Holstein cows (183 ± 70 DIM) Randomized block design, blocks formed on days in milk, milk yield, and parity (n=8/treatment) Trial duration: 21 days (7 days adaptation / 7 days experiment / 7 days recovery (NC)) 3 treatments: ■ NC: no aflatoxin B₁ and no mycotoxin deactivator □ PC: 2.8 mg of aflatoxin B₁/cow/day* ■ TN: 2.8 mg of aflatoxin B₁/cow/day* + 100 g of TOXY-NIL[®]/cow/day Measured parameters: □ Aflatoxin M₁ concentrations in milk and urine Gene expression (RNA-sequencing) in blood leucocytes and milk somatic cells

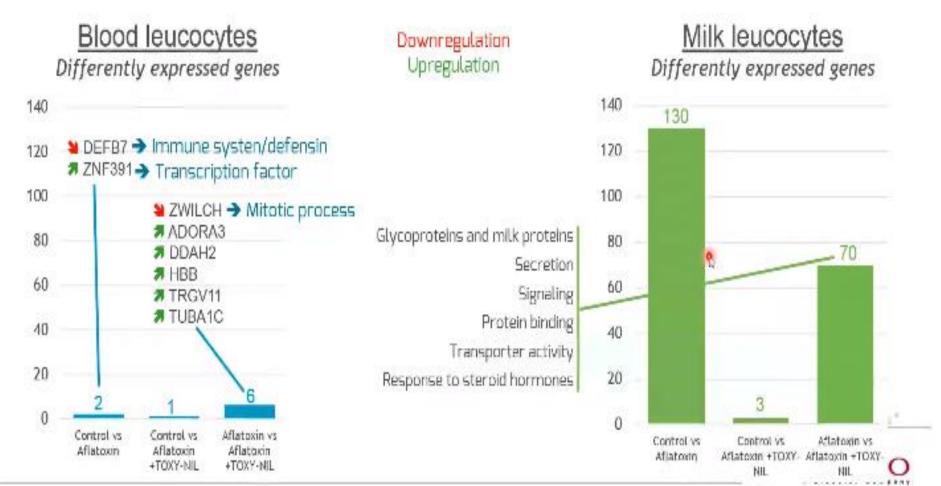
R&D results to support the mode of action of TOXY-NIL®

Results: aflatoxin intake, excretion, clearance

University of Missouri

AFE	31 (diet)
6	ver
AFI (mi	
	AFM1
	(urine)

	NC	PC	TN	SEM	
Intake of aflatoxin, µg/kg of diet	0.0	106.5 ^b	107.6 ^b	2.9	
Intake of adsorbent, % of diet	0.0	D.0ª	0.46	0.0	
Milk					
AFM ₁ concentration, µg/kg	0.0	D.6 ^b	0.2c	0.1	
AFM ₁ excretion, µg/d	0.0a	20.5h	8.1°	1.7	
AF transfer, %	0.0ª	2.7b	1.0°	0.2	
Clearance of AFM ₁ , %/d	0.0b	46,1ª	66,5ª	6.7	
Urine					
AFM ₁ concentration, µg/L	0.54	14 2a	6.95	1.5	
AFM ₁ excretion, µg/d	15.4°	521.6ª	225.8 ^b	53.1	
AF transfer, %	0.00	18.6ª	8.0b	1.9	
			1 - 10		



R&D results to support the mode of action of TOXY-NIL®

Results: gene expression

University of Missouri

